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A two-stage, stochastic programming approach is proposed for incorporating demand uncertainty
in multisite midterm supply-chain planning problems. In this bilevel decision-making framework,
the production decisions are made “here-and-now” prior to the resolution of uncertainty, while
the supply-chain decisions are postponed in a “wait-and-see” mode. The challenge associated
with the expectation evaluation of the inner optimization problem is resolved by obtaining its
closed-form solution using linear programming (LP) duality. At the expense of imposing the
normality assumption for the stochastic product demands, the evaluation of the expected second-
stage costs is achieved by analytical integration yielding an equivalent convex mixed-integer
nonlinear problem (MINLP). Computational requirements for the proposed methodology are
shown to be much smaller than those for Monte Carlo sampling. In addition, the cost savings
achieved by modeling uncertainty at the planning stage are quantified on the basis of a rolling
horizon simulation study.

Introduction and Motivation
Supply-chain planning is concerned with the coordi-

nation and integration of key business activities under-
taken by an enterprise, from the procurement of raw
materials to the distribution of the final products to the
customers. In the prevailing volatile business environ-
ment, with ever changing market conditions and cus-
tomer expectations, it is necessary to consider the
impact of uncertainties involved in the supply chain.
Sources of uncertainty in production planning can be
categorized as short-term or long-term based on their
time frames.1 Short-term uncertainty may include day-
to-day processing variations, canceled/rushed orders,
equipment failure, etc. Long-term uncertainty refers to
raw material/final product unit price fluctuations, de-
mand variations, and production rate changes occurring
over longer time frames.2 It is the latter type of
uncertainty that is addressed in this work.

One of the key sources of uncertainty in any produc-
tion-distribution system is the product demand. Prod-
uct demand fluctuations over medium-term (1-2 years)
to long-term (5-10 years) planning horizons may be
significant. Deterministic planning and scheduling mod-
els may thus yield unrealistic results by failing to
capture the effect of demand variability on the tradeoff
between lost sales and inventory holding costs. Failure
to incorporate a stochastic description of the product
demand could lead to either unsatisfied customer de-
mand and loss of market share or excessively high
inventory holding costs.3

Recognition of this drawback of deterministic models
has led to a number of publications devoted to studying
process planning under uncertainty. Some of the key
aspects that have been addressed are design and opera-
tion of batch plants,1,3,4-8 issues concerning flexibility
and reliability in process design,9-11 and long-range
planning and capacity expansion of chemical process
networks.8,12-14 As is evident from the literature re-

viewed above, almost all research has been limited to
(i) batch processing systems and (ii) single production
sites. Key features such as the presence of (semi)-
continuous processes and multiple production sites
have, so far, not been considered in detail. In view of
this, the incorporation of demand uncertainty in (semi)-
continuous, midterm, multisite planning is addressed
in this work. To this end, the deterministic midterm
planning model of McDonald and Karimi15 is adopted
as the benchmark formulation.

Modeling and Decision Making under
Uncertainty

A key component of decision making under uncer-
tainty is the representation of the stochastic param-
eters. Two distinct ways of representing uncertainty
exist. The scenario-based approach1,7,16 attempts to
represent a random parameter by forecasting all its
possible future outcomes. The main drawback of this
technique is that the number of scenarios increases
exponentially with the number of uncertain parameters,
leading to an exponential increase in the problem size.
To circumvent this difficulty, continuous probability
distributions for the random parameters are frequently
used.6,8,17 At the expense of introducing nonlinearities
into the problem through multivariate integration over
the continuous probability space, a substantial decrease
in the size of the problem is usually achieved. In this
work, the latter approach is used for describing uncer-
tainty. The product demands are modeled as normally
distributed random variables. This approach has been
widely invoked in the literature6,17,18 as it captures the
essential features of demand uncertainty and is conve-
nient to use.

One of the most widely used techniques for decision
making under uncertainty is two-stage stochastic
programming.12,14,17,19-25 In this technique, the decision
variables of the problem are partitioned into two sets.
The first-stage variables, also known as design variables,
correspond to those decisions that need to be made prior
to resolution of uncertainty (“here-and-now” decisions).
Subsequently, based on these decisions and the realiza-
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tion of the random events, the second-stage or control
decisions are made subject to the restrictions of the
second-stage recourse problem (“wait-and-see” deci-
sions). The presence of uncertainty is translated into
the stochastic nature of the costs associated with the
second-stage decisions. Therefore, the objective function
consists of the sum of the first-stage decision costs and
the expected second-stage recourse costs.

The main challenge associated with solving two-stage
stochastic problems is the evaluation of the expectation
of the inner recourse problem. For the scenario-based
representation of uncertainty, this can be achieved by
explicitly associating a second-stage variable with each
scenario and solving the large-scale extensive formula-
tion26 by efficient solution techniques such as Dantzig-
Wolfe decomposition27 and Benders decomposition.28 For
continuous probability distributions, this challenge has
been primarily resolved through the explicit/implicit
discretization of the probability space for approximating
the multivariate probability integrals. The two most
commonly used discretization strategies in the chemical
engineering literature are Monte Carlo sampling16,29

and Gaussian quadrature.8,9,30,31 The key advantage of
these methods lies in the fact that they are largely
insensitive to the type of probability distribution. The
main disadvantage, as in the scenario-based approach,
is the sharp increase in computational requirements
with increasing numbers of uncertain parameters.2

Thus far, applications of stochastic planning models
have been limited compared to those of deterministic
models because of their computationally intensive na-
ture. One of the first attempts at narrowing this
computational gap is the work of Petkov and Maranas.17

In this work, the problem of designing single-product
campaign batch plants under demand uncertainty is
addressed. By the explicit solution of the inner problem
followed by analytical integration over all product
demand realizations, the need for discretization of the
probability space is obviated. The stochastic attributes
of the problem are translated into an equivalent deter-
ministic optimization problem at the expense of intro-
ducing nonlinearities into the problem. The proposed
technique is shown to result in significant savings in
computational requirements over quadrature integra-
tion. A similar treatment of uncertainty for the more
complex midterm supply-chain planning problem is
pursued in this work.

The rest of the paper is organized as follows. In the
next section, a two-stage stochastic formulation for
incorporating demand uncertainty in the midterm plan-
ning problem posed by McDonald and Karimi15 is
proposed. First, the special case of a single production
site is addressed to motivate the proposed solution
methodology. Subsequently, utilizing the insight gained
from the analysis of the single-site case, the more
general multisite setting is discussed. A motivating
example highlighting the key features of the proposed
solution methodology is then presented, followed by the
computational results for two larger examples. Finally,
the work is summarized, and concluding remarks are
provided.

Two-Stage Stochastic Formulation

The midterm production planning model of McDonald
and Karimi15 forms the basis of this work. The key
tradeoff captured by this model, in the spirit of the
classic multi-item capacitated lot-sizing problem, is that

between fixed setup cost and inventory holding cost. The
model utilizes the concept of “slots” within which the
various supply-chain activities are assumed to occur.
The duration of this slot ranges from 1 to 2 months, in
accordance with the midterm nature of the model.
Further details about the various model attributes and
limitations can be found in McDonald and Karimi15 and
Gupta and Maranas.32

McDonald and Karimi15 classify the constraints of the
model into two distinct sets. The first set of production
constraints ensure that an efficient allocation of the pro-
duction capacity is achieved at the various production
sites. These constraints determine the optimal operating
policies at the production sites. The second category of
constraints are referred to as supply-chain constraints.
These constraints model the post-production activities
of inventory management and effective allocation of
customer demand. The idea of distinguishing between
production constraints and supply-chain constraints
naturally extends to the decision variables of the
model,32 resulting in the partitioning of the variables
into production variables and supply-chain variables.
The production variables, which establish the location
and timing of production runs, length of campaigns,
production amounts, and consumption of raw materials,
uniquely define the production levels and resource
utilization in the supply chain. The supply-chain vari-
ables determine the flow of materials throughout the
production-distribution system while accounting for
inventory management. Because of the considerable
lead times involved in the production process, the
production variables need to be set here-and-now, prior
to demand realization. The supply-chain activities, such
as inventory control and customer demand allocation,
on the other hand, can be performed in a wait-and-see
mode.

The classification of the variables and constraints of
the midterm planning model into two distinct categories
results in a two-stage hierarchical decision-making
framework, which can be effectively utilized for incor-
porating demand uncertainty. The two-stage midterm
planning model under demand uncertainty is formu-
lated as

subject to

(2SMP)

min
Pijs,RLijs,FRLfjs

Cis,Wiss′,Yfjs

∑
f,j,s

FCfYfjs + ∑
i,j,s

vijsPijs + ∑
i,s

pisCis + ∑
i,s,s′

tiss′Wiss′

+Eθi [min
Sis,Iis

Iis
∆,Ii

-

∑
i,s

tisSis + ∑
i,s

úisIis
∆ + ∑

i,s

hisIis + ∑
i

µiIi
-

such that

∑
s

Sis e θi ∀ i ∈ IFP

Iis ) Iis
0 + ∑

j

Pijs - ∑
s′

Wiss′ - Sis ∀ s, i∈ IRM

θi - ∑
s

Sis e Ii
- e θi ∀ i ∈ IFP

Iis
L - Iis e Iis

∆ e Iis
L ∀ s, i∈ IRM

Sis, Iis, Ii
-, Iis

∆ g 0

]
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The first-stage production decisions correspond to Pijs,
RLijs, FRLfjs, Cis, Wiss′, and Yfjs in model 2SMP. The first-
stage decision-making process is represented by the
outer optimization problem consisting of eqs 1-6, which
are the production constraints. The objective function
of 2SMP is composed of two terms. The first includes
the costs incurred in the production stage. These are
the fixed and variable costs of production, raw material
charges, and the cost of shipping intermediate products
between production facilities. The second term quanti-
fies the expected costs of the inner inventory-manage-
ment recourse problem. The constraints of this embed-
ded optimization problem are referred to as the supply-
chain constraints, and the decision variables involved,
Sis, Iis, Iis

∆, and Ii
-, constitute the supply-chain vari-

ables. These variables are akin to control variables as
they can be fine-tuned to ensure optimality in the face
of uncertainty. The inner problem, thus, identifies the
values of the supply-chain variables that minimize the
total supply-chain cost for a given set of values of the
production variables and demand realizations (θi). The
basic idea of the methodology proposed for solving model
2SMP is based on obtaining a closed-form solution of
this inner problem. This process is discussed for the
special case of a single production site in the next
section.

Single Production Site

Before addressing the more relevant multisite in-
stance of problem 2SMP, the simpler case of a single
production site is considered. This analysis provides the
insight based upon which the more general multisite
setting will be addressed next.

Consider the inner inventory-management problem
for the single-site case. Elimination of the inventory
variable (Ii) and the customer shortage variable (Ii

-)
and corresponding redundant constraints results in the
following form for the inner problem. Note that the site
index has been omitted for convenience.

subject to

where

Given the values for Si and Ii
∆ as obtained from prob-

lem IPSPS, Ii and Ii
- can be calculated “off-line” as

The constraints of problem IPSPS can be described as
follows. Equation 7 enforces no overstocking at the
customer. Equation 8, along with the nonnegativity of
the inventory deviation variable, ensures that the
underpenalty cost is incurred only when the inventory
level is below the target safety stock level. Equation 9
represents the nonnegativity of inventory held.

Two important features of IPSPS that are useful in
characterizing its optimal solution are that (i) it de-
couples over products and (ii) it consequently involves
only two variables (Si and Ii

∆). This makes it amenable
to solution by a graphical approach. Note that, because
the uncertain demand θi appears in the constraint set,
the feasible region of problem IPSPS varies for different
demand realizations. This implies that, even though
problem IPSPS involves only two variables, it is not
possible to a priori obtain a graphical representation of
its feasible region. This problem can, however, be
resolved by considering the dual of IPSPS. In the result-
ing problem, because all cost coefficients are assumed
to be deterministic, the feasible region will be indepen-
dent of demand realizations. Thus, by associating non-
negative dual variables ui, vi, and wi with constraints
7, 8, and 9, respectively, the dual of problem IPSPS for
each product i is given by

subject to

Under the assumption that the demand (θi) is always
nonnegative, ui can be eliminated from DIPi using eq
13 to give the following equivalent formulation, after
the constant term (hiAi + µiθi) is dropped.

subject to

Pijs ) RijsRLijs ∀ j, s, i ∈ I RM (1)

Cis ) ∑
i′

âi′is∑
j

Pi′js ∀ s, i ∈ I FP (2)

Cis ) ∑
s′

Wis′s ∀ s, i ∈ I IP (3)

FRLfjs ) ∑
i:λif)1

RLijs ∀ j, s, f (4)

∑
f

FRLfjs e Hjs ∀ j, s (5)

MRLfjsYfjs e FRLfjs e HjsYfjs ∀ f, j, s (6)

Pijs, RLijs, FRLfjs, Cis, Wiss′ g 0, Yfjs ∈ {0, 1}

(IPSPS)

∑
i

hiAi + ∑
i

µiθi + min
Ii

∆,Si

∑
i

úiIi
∆ - ∑

i

(hi + µi - ti)Si

Si e θi (7)

Si - Ii
∆ e Ai - Ii

L (8)

Si e Ai (9)

Si, Ii
∆ g 0 (10)

Ai ) Ii
0 + ∑

j

Pij (11)

Ii ) Ai - Si and Ii
- ) θi - Si (12)

(DIPi)

hiAi + µiθi + max
ui,vi,wi

-θiui - (Ai - Ii
L)vi - Aiwi

ui + vi + wi g hi + µi - ti (13)

vi e úi (14)

ui, vi, wi g 0 (15)

(DIP′i)

-(hi + µi - ti)θi + max
vi,wi

vi(θi - Ai + Ii
L) + wi(θi - Ai)
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For each product i, problem DIP′i involves only two
variables vi and wi. A graphical representation of the
feasible region can thus be obtained, as shown in Figure
1. Based on the feasible region illustrated in Figure 1,
a cost assumption that has been implicitly incorporated
is

This assumption ensures economic feasibility of the
production-distribution system. For an enterprise to
sustain in the market, the revenue earned (µi) for a unit
of finished product sold should be larger than the
cumulative sum of the inventory holding (hi), under-
penalty (úi), and transportation (ti) costs.

The vector representing the gradient of the objective
function, along with its corresponding vi and wi compo-
nents, is also shown in Figure 1. The direction of this
vector represents the direction of maximum ascent of
the objective function value. The sign of the components
of this vector determine which direction, out of those
labeled I-IV in Figure 1, is the one of maximum ascent.
It is not possible to determine this direction a priori
because the two components depend on the realization
of the stochastic demand. Therefore, four distinct cases
should be considered for the four possible sign combina-
tions of these two components. Based on this observa-
tion, the optimal solution for problem DIP′i can be
characterized as follows:

The resulting optimal objective function values for
problem DIP′i are

Based on the dual optimal solutions obtained for prob-
lem DIP′i, the corresponding primal optimal solutions
for problem IPSPS can be reconstructed as

Figure 2 shows the variation of the optimal supply
policies with demand realization. As illustrated in the

figure, the three distinct regions corresponding to the
cases I, II, and III can be viewed as regimes of low-,
intermediate-, and high-demand realizations, respec-
tively. The transitions from low- to intermediate- and,
subsequently, from intermediate- to high-demand re-
gimes occur at demand realizations indicated by Θi

LfI

and Θi
IfH, respectively.

An intuitive interpretation of the optimal supply
policies shown in Figure 2 can be realized by considering
the network representation of problem IPSPS, as shown
in Figure 3. Production variable Ai can be viewed as the
amount of finished product available for supply at the
production node prior to demand realization, as il-
lustrated in Figure 3. This amount equals the sum of
the initial inventory of the product and the total amount
produced on all processors at the production site.
Requirements for the product exists at two different
demand nodes. There is an internal demand of Ii

L units
at the inventory node and an external demand of θi units
at the customer node, as shown in Figure 3. A key
distinction between these two demands is that the
internal demand is deterministic, whereas the external

Figure 1. Feasible region and directions of steepest ascent of
objective function for problem DIP′i (cases I-IV).

Figure 2. Optimal supply policies for the single-site case.

Figure 3. Network representation of problem IPSPS.

vi + wi e hi + µi - ti (16)

vi e úi (17)

vi, wi g 0 (18)

hi + µi - ti - úi g 0 (19)

Case I: θi - Ai e 0, θi - Ai + Ii
L e 0

w vi ) 0, wi ) 0

Case II: θi - Ai e 0, θi - Ai + Ii
L g 0

w vi ) úi, wi ) 0

Case III: θi - Ai g 0, θi - Ai + Ii
L g 0

w vi ) úi, wi ) hi + µi - ti - úi

Case IV: θi - Ai g 0, θi - Ai + Ii
L e 0

w Infeasible combination

Case I: -(hi + µi - ti)θi

Case II: úi(Ii
L - Ai + θi) - (hi + µi - ti)θi

Case III: úiIi
L - (hi + µi - ti)Ai

Case I: Ii
∆ ) 0, Si ) θi

Case II: Ii
∆ ) θi - (Ai - Ii

L), Si ) θi

Case III: Ii
∆ ) Ii

L, Si ) Ai
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demand is uncertain. The flow from the production node
to the inventory node corresponds to the inventory
holding variable Ii. Similarly, the flow on the arc
directed from the production node to the customer node
corresponds to the customer supply variable Si. Note
that the inventory flow is allowed to exceed the internal
demand (overstocking). However, overstocking at the
customer is not permitted.15

Next, consider rewriting eq 19 as

The left-hand side of the above expression represents
the cost of shipping a unit of product from the produc-
tion node to the customer node. Similarly, the right-
hand side represents the net minimum cost incurred
for the transfer of one product unit to the inventory
node. This implies that, given a choice of satisfying only
one of the two demands, the external demand should
be given priority. This is referred to as the “customer
priority principle”.

In view of this, consider a specific realization of the
external demand θi. If this realization is greater than
the total supply Ai, then based on the customer priority
principle, everything must be shipped to the customer.
The inventory level will drop to zero, and thus, the
maximum possible underpenalty cost corresponding to
a deviation of Ii

L units will be incurred. This supply
policy corresponds exactly to the high-demand regime
given by case III. In this case, neither of the two
demands is completely satisfied. Now consider the other
extreme case in which the supply is large enough to
completely satisfy both demands, i.e., Ai g Ii

L + θi.
The optimal supply policy in this case would involve
shipping θi units to the customer and holding the
remaining Ai - θi units in inventory. This would be
equivalent to case I. For the intermediate-demand
regime corresponding to case II in Figure 2, the entire
external demand can be met only at the expense of
incurring some underpenalty cost. In this case, after
shipping θi units to the customer, the remaining
Ai - θi units are transferred to inventory. This results
in a deviation of Ii

L - (Ai - θi) units below the target
safety stock level.

The basic idea of obtaining an explicit solution of the
inner inventory-management problem is similar in spirit
to the parametric programming approach of Acevedo
and Pistikopoulos.33 The three demand regimes identi-
fied are equivalent to the critical regions in the para-
metric programming framework in which different bases
are optimal. Similarly, the transition demand levels
correspond to the critical points at which the change of
optimal bases occurs.34 The work of Pistikopoulos and
co-workers uses sampling based numerical integration
techniques for expectation evaluation. In contrast, in
this work an analytical method for calculating the
expectation using the explicitly derived optimal solution
is utilized, as described next.

Expectation Evaluation. The calculation of the
expected value of the solution of the inner problem
requires integration over all possible demand realiza-
tions. To facilitate this calculation, define Ri

L, Ri
I, and

Ri
H as the probabilities that measure the likelihood of

the demand of a particular product being low, interme-

diate, and high, respectively. Therefore

Application of the probability-scaled additive property
of the expectation operator to the inner problem optimal
value yields the following recourse function Qi(Ai).

where θi
m is the mean demand for product i. The

analytical evaluation of the integrals involved in eq 23
is facilitated by standardizing the demand as

and defining

where σi is the standard deviation of the demand for
product i. The probabilities for low-, intermediate-, and
high-demand realizations are then calculated as

where Φ(‚) denotes the standardized normal cumulative
distribution function. Application of the definition of
expectation for a normally distributed random variable
yields the following conditional expectations:

-µi + ti e - úi + hi

Ri
L ) Pr[θi e Ai - Ii

L] (20)

Ri
I ) Pr[Ai - Ii

L e θi e Ai] (21)

Ri
H ) Pr[θi g Ai] (22)

Qi(Ai) )

Eθi [hiAi + µiθi

+ [ -(hi + µi - ti)θi | θi e Ai - Ii
L]

+ [úi(Ii
L - Ai + θi) - (hi + µi - ti)θi | Ai - Ii

L θi e Ai ]
+ [úiIi

L - (hi + µi - ti)Ai | Ai θi]
]

) hiAi + µiθi
m

+ Ri
LEθi

[-(hi + µi - ti)θi | θi e Ai - Ii
L]

+ Ri
IEθi

[úi(Ii
L - Ai + θi) - (hi + µi - ti)θi

| Ai - Ii
L θi e Ai]

+ Ri
HEθi

[úiIi
L - (hi + µi - ti)Ai | Ai e θi] (23)

zi )
θi - θi

m

σi
(24)

Ki
1 )

Ai - Ii
L - θi

m

σi
and Ki

2 )
Ai - θi

m

σi
(25)

Ri
L ) Pr[zi e Ki

1] ) Φ(Ki
1) (26)

Ri
I ) Pr[Ki

1 e zi e Ki
2] ) Φ(Ki

2) - Φ(Ki
1) (27)

Ri
H ) Pr[Ki

2 e zi] ) 1 - Φ(Ki
2) (28)

Ind. Eng. Chem. Res., Vol. 39, No. 10, 2000 3803



where f(‚) is the normal density function. Incorporation
of the expressions for the conditional expectations and
the probabilities in eq 23 yields

Having calculated the expectation of the optimal value
of the inner problem, the original two-stage formulation
2SMP is recast as the following single-stage determin-
istic equivalent problem.

subject to

Problem DEQSPS is a mixed-integer, nonlinear problem
(MINLP). The nonlinear terms, which are restricted to
the objective function, are of the general form

The convexity of g(K) is readily established by recogniz-
ing that its second derivative is always nonnegative.3
Therefore, problem DEQSPS is a convex MINLP and can
be solved to global optimality by techniques such as
generalized benders decomposition (GBD)35 or outer
approximation (OA).36

The convexity of problem DEQSPS is a consequence of
the complete recourse property of the inner inventory-
management problem. A feasible second-stage solution
exists for any demand realization and any production
setting, as the supply policy of not shipping anything
to the customer and transferring the entire production
amount to inventory is always feasible. The feasible
uncertainty region consisting of all possible demand
realizations is, therefore, independent of the first-stage
decisions. This special problem structure leads to the
convexity of the proposed formulation. Alternately, the
convexity property can also be inferred within the
parametric programming framework by recognizing that
the first-stage variable appears only as the right-hand
side vector in the second-stage problem.

Multiple Production Sites

Having addressed the simpler single-site version of
the problem 2SMP, next consider the general multisite

case. The inner optimization problem for this case is
given by IPMPS.

subject to

where

Comparison of problem IPMPS with the single-site inner
optimization problem IPSPS indicates that the presence
of multiple production facilities is reflected in eq 33,
which allocates product supply from different sites to
meet the customer demand. This constraint couples the
production sites by enforcing no overstocking at the
customer. In addition, the transfer of intermediate
products between production sites is accounted for in
the definition of Ais by eq 37.

The separability over the set of products observed for
the single-site case is also preserved for the multisite
case. The network representation of IPMPS for a given
product is shown in Figure 4. The demand at the
customer can now be met by multiple manufacturing
facilities. Because the total number of variables involved
in IPMPS is equal to twice the number of production sites,
it is not amenable to direct graphical solution. There-
fore, a different solution strategy, utilizing the insight
gained from the single-site case, is employed. First, a
primal feasible solution for problem IPMPS is postulated
by extending the results obtained for problem IPSPS.
Subsequently, a dual feasible solution having the same
objective function value as the postulated primal solu-

E[zi | zi e Ki
1] )

1
x2π

∫-∞
Ki

1

zie
-1/2zi

2
dzi

1
x2π

∫-∞
Ki

1

e-1/2zi
2
dzi

) -
f(Ki

1)

Φ(Ki
1)

(29)

E[zi | Ki
1 e zi e Ki

2] )

1
x2π

∫Ki
1

Ki
2

zie
-1/2zi

2
dzi

1
x2π

∫Ki
1

Ki
2

e-1/2zi
2
dzi

)

-
f(Ki

2) - f(Ki
1)

Φ(Ki
2) - Φ(Ki

1)
(30)

Qi(Ai) ) [σiúi [Ki
1Φ(Ki

1) + f(Ki
1)]

+ σi(hi + µi - ti - úi) [Ki
2Φ(Ki

2) + f(Ki
2)]

- µiσiKi
2 + úiIi

L + tiAi
]

(31)

(DEQSPS)

min
Pij,RLij,FRLfj

Ci,Ai,Yfj

∑
f,j

FCfYfj + ∑
i,j

vijPij + ∑
i

piCi + ∑
i

Qi(Ai)

eqs 1-6, 11, and 25

g(K) ) KΦ(K) + f(K) (32)

Figure 4. Network representation of problem IPMPS.

(IPMPS)

∑
i,s

hisAis + ∑
i

µiθi + min
Iis

∆,Sis

∑
i,s

úisIis
∆ - ∑

i,s
(his + µi - tis)Sis

∑
s

Sis e θi (33)

Sis - Iis
∆ e Ais - Iis

L (34)

Sis e Ais (35)

Sis, Iis
∆ g 0 (36)

Ais ) Iis
0 + ∑

j

Pijs - ∑
s′

Wiss′ (37)
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tion is constructed. This establishes the optimality of
the postulated primal solution based on the strong
duality theorem of linear programming.

The construction of the primal feasible solution for
IPMPS requires the introduction of additional notation
and assumptions. The key questions that need to be
answered for the multisite case are as follows: (1) Which
sites service the customer in the three demand regimes?
(2) What is the relative supply ranking in the three
demand regimes? To answer the first question, based
on the relative magnitudes of As and Is

L (the index i is
dropped in all further analysis for clarity of presenta-
tion), the sites are classified as

with IS ∪ ID ) S and IS ∩ ID ) φ. Sites belonging to
set IS are referred to as internally sufficient (IS) sites
while those constituting set ID are termed internally
deficient (ID). This terminology stems from the inter-
pretation of As - Is

L as the production amount available
in excess of the internal demand at a particular produc-
tion site. Note that different IS and ID site classifica-
tion sets exist for each product i.

To answer the second question, two additional cost
parameters need to be defined as

A schematic description of γs and ωs, which are defined
as the over-safety stock-supply cost (OSS) and the under-
safety stock-supply cost (USS), respectively, is given in
Figure 5. OSS represents the cost incurred after a unit
of product is transferred from the inventory to the
customer (not including the revenue earned) from above
the safety stock level. Alternately, if the product is
supplied from below the safety stock level, the cost
incurred is USS. These two cost parameters play an
important role in determining the order in which the
sites service the customer in a particular demand
regime.

The following cost assumptions are also enforced.

Equation 40 is simply an extension of the customer
priority principle to the multisite setting. The assump-
tion that ús is greater than hs is consistent with
maintaining an inventory target of Is

L. The assumption
that inventory holding cost hs exceeds the transportation

cost ts typically holds for most local and global supply
chains. In the latter, because of appreciable transit lead
times, the transportation charges are usually viewed as
surrogates for inventory holding costs.

An important relationship that results from eq 41 is

Equation 42 implies that, given a choice for shipping a
unit of product from above or below the safety stock
level, the former should be chosen for minimizing cost.
This key result is exploited next for postulating optimal
supply policies in the low-, intermediate-, and high-
demand regimes.

Low-Demand Regime. For the single-site case, the
low-demand regime consists of all possible demand
realizations for which zero underpenalty charges are
incurred. In the multisite setting, however, because of
the presence of the ID sites, underpenalty charges may
be unavoidable. Therefore, for the multisite case, the
low-demand regime is defined as the set of all possible
demand realizations for which minimum total under-
penalty charges are incurred in the supply chain. This
corresponds to limiting the underpenalty charges to only
the ID sites and not violating the safety stock levels at
any of the IS sites.

If the external demand is zero, the available amount
As is transferred to inventory at all sites, as no over-
stocking is permitted at the customer. Subsequently,
any nonzero demand can be met at minimum cost by
shipping the product from the IS site with the lowest
OSS cost. The maximum demand that can be allocated
to this site before switching to the site with the second
lowest OSS cost is the inventory in excess of the target
safety stock level ( i.e., As - Is

L). This prevents the
inventory level at the first (lowest OSS cost) site from
dipping below the target safety stock level avoiding
underpenalty charges.

Based on these observations, feasible supply policies
for the IS sites can be obtained by ranking them in
increasing order of OSS cost (Figure 6). The resulting
sequence of sites, starting with the site with the lowest
OSS cost, represents the order in which the IS sites
service the customer. In accordance with the definition
of the low-demand regime, As - Is

L units are shipped
from a given site before switching to the next one to
maintain the underpenalty charges at a minimum. The
entire available amount at the ID sites is transferred
to inventory to minimize underpenalty charges.

The production sites are reordered to obtain a concise
mathematical representation of the above-described

Figure 5. Schematic illustration of γs (OSS) and ωs (USS).

IS ) {s ∈ S | As - Is
L g 0}

ID {s ∈ S | As - Is
L < 0}

γs ) ts - hs (38)

ωs ) ts - hs + ús (39)

µ + hs - ts - ús g 0 (40)

ts e hs e ús (41)

Figure 6. Low-demand regime for the multisite case.

γs e 0 e ωs (42)
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supply policies such that the condition

holds. Also, define site sl
/ ∈IS as

Note that the summations in eq 44 consider only the
IS sites. The supply policies for the different sites are
then given by

For a low-demand realization given by eq 44, eqs 45-
48 summarize the supply policies obtained by sequen-
tially allocating demand to the IS sites. Ranking of the
IS sites on the basis of the OSS cost is achieved through
eq 43, and no shortage at the customer (I- ) 0) exists
in the low-demand regime. The transition demand level
ΘLfI is thus given by

as shown in Figure 6.
Intermediate-Demand Regime. Demand realiza-

tions exceeding ΘLfI comprise the intermediate-demand
regime. For a demand realization of ΘLfI, based on the
analysis presented for the low-demand regime, the
supply policies consist of shipping As - Is

L units from
each of the IS sites. As a result, the inventory levels at
all of the IS sites are driven to Is

L. Thus, supply of an
additional unit of product to the customer causes the
inventory level of one of the sites to fall below the target
safety stock level. This implies that, irrespective of the
type of site (i.e., IS or ID) chosen to ship this additional

unit, a USS cost is incurred. Therefore, to minimize cost,
the candidate site for supplying this additional unit
(over and above ΘLfI) to the customer is the one with
the lowest USS cost.

The above observation suggests that a procedure
based on ranking the sites with respect to the USS cost
can be used to allocate the portion of demand in excess
of ΘLfI. Thus, for an intermediate demand θ g ΘLfI,
the allocation of demand can be achieved in two phases.
In the first phase, ΘLfI units are allocated to the IS sites
based on their OSS cost rank. In the second phase, the
remaining θ - ΘLfI units are allocated by re-ranking
all of the sites in terms of their USS cost (Figure 7).

In the spirit of the low-demand regime, ranking of
the sites on the basis of their USS cost is achieved by
reordering the production sites such that the condition

holds. Let si
/ ∈ IS ∪ ID be the site for which

For this intermediate-demand realization, the supply
policies for the ID and IS sites are given by

Equations 52-55 represent the supply policies for an
intermediate-demand realization given by eq 51. Con-
sequently, the transition demand level ΘIfH is given by

as shown in Figure 7. As in the low-demand regime,
there is no shortage at the customer (I- ) 0).

γs-1 e γs (43)

∑
s)1
s∈IS

sl
*-1

(As - Is
L) e θ e ∑

s)1
s∈IS

sl
*

(As - Is
L) (44)

Ss ) 0
Is ) As

Is
∆ ) Is

L - As
}∀ s ∈ ID (45)

Ss ) As - Is
L

Is ) Is
L

Is
∆ ) 0 }∀ s e sl

/ - 1, s ∈ IS (46)

Ss ) θ - ∑
s1)1
s∈IS

sl
*-1

(As - Is
L)

Is ) As - θ + ∑
s)1
s∈IS

sl
*-1

(As - Is
L)

Is
∆ ) 0

}s ) sl
/, s ∈ IS (47)

Ss ) 0
Is ) As

Is
∆ ) 0 }∀ s g sl

/ + 1, s ∈ IS (48)

ΘLfI ) ∑
s∈IS

(As - Is
L)

ωs-1 e ωs (50)

ΘLfI + ∑
s)1

s∈ID

si
/-1

As + ∑
s)1
s∈IS

si
*-1

Is
L e θ e ΘLfI + ∑

s)1
s∈ID

si
*

As + ∑
s)1
s∈IS

si
*

Is
L

(51)

Ss ) As
Is ) 0
Is

∆ ) Is
L }∀ s e si

/ - 1 (52)

Ss ) θ - ∑
s)1

si
*-1

As - ∑
sgsi

*+1
s∈IS

(As - Is
L)

Is ) As - θ + ∑
s)1

si
*-1

As + ∑
sgsi

*+1
s∈IS

(As - Is
L)

Is
∆ ) Is

L - As + θ - ∑
s)1

si
*-1

As - ∑
sgsi

*+1
s∈IS

(As - Is
L) }s ) si

*

(53)

Ss ) 0
Is ) As

Is
∆ ) Is

L - As
}∀ s g si

/ + 1, s ∈ID (54)

Ss ) As - Is
L

Is ) Is
L

Is
∆ ) 0 }∀ s g si

/ + 1, s ∈IS (55)

ΘIfH ) ∑
s

As (56)
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High-Demand Regime. In the low- and intermedi-
ate-demand regimes, the entire customer demand is
met, and no sales are lost (i.e., I- ) 0). For high-demand
realizations (i.e., θ g ΘIfH), however, this is no longer
possible. Therefore, based on the customer priority
paradigm, the entire production amount from all of the
sites is transferred to the customer location resulting
in the following optimal supply policies.

Complete inventory depletion at all of the manufactur-
ing facilities results in maximum underpenalty charges
in the supply chain.

Next, the feasibility and optimality of the postulated
supply policies are ascertained. The methodology adopted
for allocating demand to the various production sites
ensures that the amount supplied from a site does not
exceed the total amount available for supply (As). This
guarantees nonnegative inventory levels at the sites.
The no-overstocking restriction is also enforced by not
shipping in excess of the demand in the low- and
intermediate-demand regimes, thereby ensuring the
feasibility of the constructed primal solution. The opti-
mality of this solution is established based on LP duality
(see Appendix A for the proof). Subsequently, as for the
single-site case, the expectation evaluation is carried out
analytically. The derived expressions are given in Ap-
pendix B.

Deterministic Equivalent Formulation

The derivation of the deterministic equivalent formu-
lation of the multisite case requires the classification
of sites into types ID and IS. To this end, the disjunctive
programming approach of Balas37 is utilized. This
involves associating binary variables δs

+ and δs
- defined

as

with each of the production sites in the supply chain.

Because IS and ID are disjoint sets, the condition

must hold. The disjunction is extended to the production
variable As by defining

in conjunction with the restrictions

where As
UP denotes an upper bound on As and is given

by

based on the first-stage production setting constraints.
Under this transformation, the standardized variables
Ksl

*
1 and Ksi

*
2 are given by

Consequently, after the expected second-stage costs are
included (eq 74 in Appendix B), the deterministic
equivalent formulation for the multisite case is given
by

subject to

Note that the product index i has been reintroduced in
the formulation.

Illustrative Example

The proposed methodology is first highlighted with a
small three-site supply-chain example. A single product
is produced at each one of these sites on a single
processor. The parameters characterizing this supply
chain are listed in Table 1. The initial inventory at all
three sites is zero, and the revenue earned per unit
product µ is equal to 5.0. The uncertain product demand
θ is given by N(110,30).

The deterministic single-stage equivalent problem
DEQMPS is solved for the example supply chain using
OA. The optimal objective value obtained is 291 with

Figure 7. Intermediate-demand regime for the multisite case.

Ss ) As
Is ) 0
Is

∆ ) Is
L

I- ) θ - ∑
s∈IS ∪ ID

As }∀ s ε IS ∪ ID (57)

δs
+ ) {1 if s ∈ IS

0 otherwise and δs
- ) {1 if s ∈ ID

0 otherwise (58)

δs
+ + δs

- ) 1 (59)

As ) As
+ + As

- (60)

Is
Lδs

+ e As
+ e As

UPδs
+ (61)

0 e As
- e Is

Lδs
- (62)

As
UP ) Is

0 + ∑
j

RjsHjs (63)

σKsl
*

1 ) [∑
s)1

sl
*

(As
+ - Is

Lδs
+) - θm] (64)

σK
si

*
) [ΘLfI + ∑

s)1

si
*

(As
- + Is

Lδs
+) - θm] (65)

(DEQMPS)

min
Pijs,RLijs,FRLfjs
Cis,Yfjs,Ais,Wiss′

∑
f,j,s

FCfYfjs + ∑
i,j,s

vijsPijs + ∑
i,s

pisCis +

∑
i,s,s′

tiss’Wiss′ + ∑
i

Qi(Ais)

eqs 1 - 6, 37, 58-65, and 74
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the optimal first-stage planning decisions given in Table
2. The optimal production run lengths RLs and amounts
Ps are listed in Table 2. The detailed supply policies for
the three production sites, shown in Figure 8, illustrate
the flow on the supply and inventory arcs for all demand
regimes. The safety stock levels Is

L imply that site 1 is
of type ID, while sites 2 and 3 are of type IS. Therefore
ID ) {1} and IS ) {2,3}. The ranking of the IS sites
on the basis of their OSS costs determines the supply
policies in the low-demand regime. The first 57 product
demand units are allocated to site 2, which is the IS
site with the lowest OSS cost. Product demand between
57 and 76 units is assigned to site 3, as shown in Figure
8. This demand level of 76 units corresponds to the
transition demand level ΘLfI. By not allowing the
inventory levels to fall below the safety stock level at
sites 2 and 3, the underpenalty charges are restricted
to only site 1 (where they are unavoidable). The inter-
mediate-demand regime is composed of product demand
orders between 76 and 166 units. Ranking of the three
sites with respect to their USS costs determines the
optimal supply policy in the intermediate regime. Site
2 is the site with the lowest USS cost. Demand is
initially allocated to site 2 until the inventory at site 2
is completely depleted. At this point, supply is redirected

to the site with the second lowest USS cost (site 3). Upon
depletion of inventory in site 3, product demand is
allocated to site 1, as shown in Figure 8. This deter-
mines the transition demand level ΘIfH. The supply
policies in the high-demand regime consist of shipping
the entire production amount at the three sites to the
customer. By parametrically solving the inner optimiza-
tion problem, the optimal supply policies for the entire
range of demand realizations are identified. Given any
demand realization, the supply policy that minimizes
the expected cost can thus be ascertained.

In light of these results, it is important to quantify
the impact of uncertainty on the planning decisions.
This can be accomplished on the basis of the value of
the stochastic solution (VSS),26 which evaluates the cost
of ignoring uncertainty. By replacing all random pa-
rameters by their expected values and solving the
resulting deterministic expected-value (EV) problem, the
EV solution is obtained. Subsequently, the recourse
problem (RP) is solved with the first-stage decisions
fixed at the EV solution. The resulting optimal value is
known as the expected result of using the EV solution
(EEV).26 EEV measures how the EV solution performs
in the face of uncertainty. The VSS is then defined by

Table 3 lists the EEV and the VSS values obtained
for the illustrative example as the standard deviation
of the demand is varied. The monotonically increasing
values of the VSS indicate that the cost of neglecting
uncertainty increases with the degree of uncertainty.
Under high-risk conditions, savings of approximately 9%
are achieved, justifying the inclusion of uncertainty in
the planning decisions. In the following example, a
computational comparison between the discretization
methods and the proposed solution technique is pro-
vided for a larger supply chain.

Example 1

The first example, initially proposed by McDonald and
Karimi,15 consists of 34 products that are manufactured
at two consecutive production sites. The first site
produces 23 products grouped into 11 product families.
Some of these 23 products are shipped as intermediates
to the second site, which produces the remaining 11
products. Demands for all products are present at the
beginning of each one of the 12 time periods of 1 month
duration. A detailed description of the problem can be
found in McDonald and Karimi.15

First, the single-period version of this problem in-
stance is considered. The product demands are assumed
to be normally distributed with a standard deviation of
20% of the expected demand. The resulting problem
DEQMPS is solved by a customized implementation of

Figure 8. Supply policies for motivating example.

Table 1. Parameters for the Motivating Example

s FCs vs Rs Hs MRLs ts hs ús Is
L γs ωs

1 4.5 0.5 0.5 100 50 0.1 0.8 1.7 100 -0.7 1.0
2 6.5 0.3 0.6 120 25 0.2 0.7 1.3 15 -0.5 0.8
3 5.0 0.6 0.5 150 20 0.3 0.6 1.2 25 -0.3 0.9

Table 2. Optimal First-stage Production Policies for the
Motivating Example

s Ys RLs Ps

1 1 100 50
2 1 120 72
3 1 88 44

Table 3. Variation of EEV, RP, and VSS with Demand
Standard Deviation for the Illustrative Example

σ EEV RP VSS
VSS
RP × 100

10 287 285 2 0.70
15 292 286 6 2.10
20 298 287 11 3.83
25 305 288 17 5.90
30 313 291 22 7.56
35 321 294 27 9.18

VSS ) EEV - RP
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the OA algorithm.36 The lower and upper bounds
obtained are 274.70 and 274.74, respectively. These are
obtained in only 5 iterations of the OA implementation
utilizing a total of 2 CPU s. For comparison, the single-
period problem is also solved using Monte Carlo sam-
pling.26 This involves the generation of a large number
of demand scenarios and the incorporation of supply-
chain variables for each one of these scenarios in the
inner optimization problem, yielding an MILP formula-
tion. This MILP is solved for an increasing number of
scenarios, and the results are shown in Figure 9. As
expected, the Monte Carlo optimal value approaches the
exact optimal objective function as the number of con-
sidered scenarios increases. However, over 1000 of them
are needed for good agreement. Figure 10 shows the
computational resources expended in obtaining these
results, which scale exponentially with the number of
scenarios, in accordance with the NP-hard nature of
the MILP problem. Computational savings of almost
2 orders of magnitude over Monte Carlo sampling (2
CPU s as compared to 1067 CPU s for 700 scenarios)
clearly highlight the benefits of the proposed methodol-
ogy.

Next is examined what quantitative benefit, if any,
is achieved by incorporating a description of uncertainty
for a multiperiod planning framework. To answer this
question, the following multiperiod simulation study is
conducted. Consider two planners: a stochastic planner
(S), who has information about both the mean and the
standard deviation of the demand; and a deterministic
planner (D), who has information only about the mean
demand. Both of these planners plan on a rolling horizon
basis, as shown in Figure 11. In the first period, planner
S solves the stochastic formulation, while planner D

solves the deterministic formulation. This results in two
alternative optimal production policies for the first
period. Based on the optimal values taken by the
production variables, the two planners identify the three
demand regimes for each product. Subsequently, ran-
domly generated demand realizations are revealed to
both planners (Figure 11). Based on whether the
demand realized is low, intermediate, or high, the
supply policies for each product are determined by the
two planners, along with the actual second-stage costs.
The optimal supply policies define the initial condi-
tions for the second period. For example, the inventory
level as determined by the supply policies defines
the initial inventory for the second period. Similarly,
the shortage at the customer at the end of the first
period is incorporated into the mean demand for the
second period. This procedure is carried out in a rolling
horizon manner for the 12-month planning period.
It is repeated a number of times to average over the
randomly generated demands revealed to the two plan-
ners.

The performance of the two planners is shown in
Figure 12, where the running average optimal expected
costs for the two planners are plotted against an
increasing number of demand randomizations. Clearly,
the stochastic planner consistently outperforms the
deterministic planner by identifying better planning
policies. In the limit, expected values of the multiperiod
costs obtained reach 19643 and 20027 for planner S and
D, respectively. These represent cost savings of ap-
proximately 2% by the stochastic planner. This differ-
ence in the expected costs can be interpreted as the
savings achieved solely by including a description of
demand variability, quantified in terms of the standard
deviation of the uncertain demand, into the planning
process.

Example 2

The second example problem consists of a larger
supply chain involving six production sites manufactur-

Figure 9. Comparison of a Monte Carlo sampling implementation
with the proposed solution procedure.

Figure 10. Variation of computational time with number of
scenarios sampled.

Figure 11. Simulation procedure adopted for the multiperiod
setting.

Figure 12. Multiperiod simulation results for the stochastic and
the deterministic planners.
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ing a total of 30 products, as illustrated in Figure 13.
Sites 1 and 2 (3 and 4) produce the same products, 1-10
(11-20). However, these sites are characterized by
different production characteristics and cost parameters.
These products are either shipped as finished products
to the customer or as intermediate products to sites 5
and 6, as shown in Figure 13. An assembly-type product
structure exists at sites 5 and 6, where each finished
product is produced from two intermediate products. All
sites consist of a single processor that is capacity
constrained, and fixed setup charges are incurred at
each site.

To assess the computational complexity of the prob-
lem, the deterministic version of the problem is solved
first. The optimal deterministic plan incurs a total cost
of 1332.54 obtained after 145 CPU s. Subsequently, the
stochastic problem is solved with the customized OA
algorithm. This identifies lower and upper bounds of
1509.14 and 1509.62 respectively in 9 iterations of the
algorithm and 2372 s of CPU time. The increased
objective value over the deterministic optimal objective
value reflects the cost of uncertainty at the planning
stage. The same problem instance is also solved using
Monte Carlo sampling. The results obtained (see Table
4) illustrate the widening gap between analytical inte-
gration and stochastic sampling for larger problem
instances.

Summary and Conclusions

In this paper, a two-stage modeling and solution
framework was proposed for incorporating demand
uncertainty in midterm planning problems. The mid-
term planning model of McDonald and Karimi was
adopted as the reference model. Specifically, the supply
chains considered were characterized by (semi)continu-
ous processes and multiple production sites. The par-
titioning of the variables and constraints of the model
into production and supply chain provided the appropri-
ate structure for a two-stage stochastic programming
formulation. The production decisions, because of their
appreciable lead times, were made in a here-and-now
fashion before the uncertainty in demand was resolved.
Subsequently, the wait-and-see supply-chain decisions
were made on the basis of the production decisions and
the realization of the demand.

The expectation evaluation of the inner recourse
problem was resolved in two steps. The first step
involved obtaining a closed-form solution of the inner
problem using LP duality. This analysis led to three
different optimal supply policies depending on whether
the product demand was within the low-, intermediate-,
or high-demand regime. Based on the insight obtained
from the single-site case, the multisite case was subse-
quently resolved. Two key issues identified in the
analysis for the multisite case were (i) the classification
of sites into types IS and ID and (ii) the ranking of sites
on the basis of the OSS and USS costs in the low- and
intermediate-demand regimes. The second step was
the computation of the expectation of the second-stage
costs by analytical integration. The resulting single-
stage deterministic equivalent MINLP was shown to
have a convex continuous part. A customized version
of OA36 was implemented. Computational results
for multisite problems indicated that the proposed
analysis and solution framework was at least an order
of magnitude more efficient than sampling methods
such as Monte Carlo integration at the expense of
restricting the modeling of uncertainty to normal. In
addition, a comparitive study between the planning
suggestions of a deterministic model and the proposed
two-stage stochastic model showed that planning sav-
ings can be realized by recognizing and incorporat-
ing demand uncertainty in the decision-making frame-
work.

It is important to note that the normality assumption
for the uncertain demands plays a key role in the
expectation evaluation step of the proposed methodol-
ogy. Extension of this work to account for a general
probability distribution is under consideration. Incor-
poration of uncertainty in the second-stage cost param-
eters such as revenue, transportation cost, and under-
penalty cost within the proposed analytical framework
is also being explored. Furthermore, application of the
proposed methodology to the more general multiperiod
and multicustomer problem is under investigation.
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Notation

Sets

I ) {i} ) set of products
I RM ⊂ I ) {i} ) set of raw materials
I IP ⊂ I ) {i} ) set of intermediate products
I FP ⊂ I ) {i} ) set of finished products
F ) {f} ) set of product families
J ) {j} ) set of processors
S ) {s} ) set of production sites

Parameters

pis ) price of raw material i ∈ I RM at site s
FCf ) setup cost for family f
vijs ) variable production cost for product i ∈ I RM on

processor j at site s

Figure 13. Supply chain for second example.

Table 4. Monte Carlo (MC) Results for Example 2

# scenarios MC optimal CPU

10 1441 2108
50 1497a g10000

100 1544b g10000
a 2% optimality gap. b 4% optimality gap.
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his ) inventory holding cost for product i ∈ I FP at site s
úis ) penalty for dipping below target safety stock level of

product i ∈ I FP at site s
tiss′/tis ) transportation cost to move a unit of product i from

site s to site s′/customer location
µi ) revenue per unit of product i ∈ I FP

Rijs ) rate of production of product i ∈ I RM on processor j
at site s

âi′is ) the yield adjusted amount of raw material or
intermediate product i ∈ I FP that must be consumed to
produce a unit of i′ ∈ I RM at site s

Hjs ) amount of time available for production on processor
j at site s

λif ) binary parameter indicating whether product i belongs
to family f

MRLfjs ) minimum run length for family f on processor j
at site s

θi ) uncertain demand for product i ∈ I FP

Iis
0 ) inventory of product i at site s at the start of the

planning horizon

Iis
L ) safety stock target for product i at site s

Variables

Pijs ) production amount of i ∈ I RM on processor j at site
s

RLijs ) run length of product i ∈ I RM on processor j at site
s

FRLfjs ) run length for family f on processor j at site s
Cis ) consumption of raw material or intermediate product

i ∈ IFP at site s
Wiss′ ) flow of intermediate product i ∈ I IP from site s to

s′
Sis ) supply of finished product i ∈ I FP from facility s to

the customer location
Iis ) inventory level for i ∈ I RM at site s

Ii
- ) amount of shortage of finished product i ∈ I FP at the

customer location

Iis
∆ ) deviation below target safety stock level for product

i ∈ I RM at site s

Appendix A
Consider the LP dual of problem IPMPS. By associating

nonnegative dual variables u, vs, and ws with eqs 33,
34, and 35, respectively, this can be formulated as

subject to

The following dual solution is postulated for the three

demand regimes:

The feasibility of this solution is established by substi-
tuting into the constraints of the dual problem and using
the cost assumptions (eqs 40-42) and the ranking
schemes in the various demand regimes. In addition,
this dual feasible solution results in the same objective
function values for the three demand regimes as the
postulated primal feasible solutions. Dual solution
feasibility and equality of primal and dual objectives
implies the optimality of the postulated supply policies
based on the principle of strong LP duality.

Appendix B

Let Rsl
*

L , Rsl
*

I , and RH be the probabilities that the
product demand lies in the low-, intermediate-, and
high-demand regimes, respectively.

Subsequently, the recourse function Q(As), which quan-
tifies the expected second-stage costs for the multisite
case, is given by

Low-Demand Regime

u ) µ - γsl
*

vs ) {ús s ∈ ID
γsl

* - γs s e sl
/ - 1, s ∈ IS

0 s g sl
/ , s ∈ IS

ws ) 0

Intermediate-Demand Regime

u ) µ - ωsl
*

vs ) {ús s e sl
/

ús s g sl
/ + 1, s ∈ ID

ωsi
* - γs s g sl

/ + 1, s ∈ IS

ws ) {ωsl
* - ωs s e sl

/ + 1
0 s g -γs

High-Demand Regime

u ) 0

vs ) ús

ws ) µ - ωs

Rsl
*

L ) Pr[ ∑
s)1
s∈IS

sl
*-1

(As - Is
L) e θ e ∑

s)1
s∈IS

sl
*

(As - Is
L)] (66)

Rsl
*

I ) Pr[ΘLfI + ∑
s)1

s∈ID

si
*-1

As + ∑
s)1
s∈IS

si
*-1

Is
L e θ e

ΘLfI + ∑
s)1

s∈ID

si
*

As + ∑
s)1
s∈IS

si
*

Is
L] (67)

RH ) Pr[θ g ΘIfH] (68)

Q(As) ) µθm + ∑
s∈S

hsAs + EL(As) + EI(As) + EH(As) (69)

Yfjs )

{1 if family f is processed on processor j at site s
0 otherwise

max
u,vs,ws

-θu + ∑
s∈S

(Is
L - As)vs - ∑

s∈S

Asws

u + vs + ws g µ - ts + hs

vs e ús

u, vs, ws g 0
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where

and

represent the expected second-stage costs in the low-,
intermediate-, and high-demand regimes, respectively.
Analytical integration of eqs 70-72, facilitated by the
standardization of the demand parameter and the
definition of Ksl

*
1 and Ksl

*
2 as

results in

where |IS| denotes the IS site with the highest OSS cost
and |S| represents the site (IS or ID) with the highest

USS cost. The convexity of the nonlinear terms in eq
74 is preserved because they retain the same form as
the single-site case.
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