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We introduce a quantitative framework for assessing the gener-
ation of crossovers in DNA shuffling experiments. The approach
uses free energy calculations and complete sequence information
to model the annealing process. Statistics obtained for the anneal-
ing events then are combined with a reassembly algorithm to infer
crossover allocation in the reassembled sequences. The fraction of
reassembled sequences containing zero, one, two, or more cross-
overs and the probability that a given nucleotide position in a
reassembled sequence is the site of a crossover event are esti-
mated. Comparisons of the predictions against experimental data
for five example systems demonstrate good agreement despite the
fact that no adjustable parameters are used. An in silico case study
of a set of 12 subtilases examines the effect of fragmentation
length, annealing temperature, sequence identity and number of
shuffled sequences on the number, type, and distribution of
crossovers. A computational verification of crossover aggregation
in regions of near-perfect sequence identity and the presence of
synergistic reassembly in family DNA shuffling is obtained.

D irected evolution methods use the process of natural selec-
tion to combinatorially evolve enzymes, proteins, or even

entire metabolic pathways with improved properties. These
methods typically begin with the infusion of diversity into a small
set of parent nucleotide sequences through DNA recombination
andyor mutagenesis. The resulting combinatorial DNA library
then is subjected to a high-throughput selection or screening
procedure, and the best variants are isolated for another round
of recombination or mutagenesis. The cycles of recombinationy
mutagenesis, screening, and isolation continue until a protein or
enzyme with the desired level of improvement is found. In the
last few years remarkable success stories of directed evolution
have been reported (1), ranging from many-fold improvements
in industrial enzyme activity and thermostability (2) to the
design of vaccines (3) and viral vectors for gene delivery (4).

DNA shuffling (5), along with its variants, is one of the earliest
and most commonly used DNA recombination protocols. It
consists of random fragmentation of parent nucleotide se-
quences with DNase I and subsequent fragment reassembly
through primerless PCR. Library diversity is generated during
reassembly when two fragments originating from different par-
ent sequences anneal and subsequently extend. This gives rise to
a crossover, the junction point in a reassembled sequence where
a template switch takes place from one parent sequence to
another. The key advantage of DNA shuffling is that many
parent sequences can be recombined simultaneously (i.e., family
DNA shuffling; ref. 6), generating multiple crossovers per
reassembled sequence. However, crossovers tend to aggregate in
regions of high sequence identity due to the annealing-based
reassembly.

A key challenge in directed evolution is that only an infini-
tesimally small fraction of the diversity afforded by DNA se-
quences can be characterized regardless of the efficiency of the
screening procedure used. For example, a 500-bp gene implies
4500 ' 10301 alternatives, but even the most efficient screening
methods are restricted to 107–108 alternatives. Therefore, it is
important to know how diversity is generated and allocated in
the combinatorial DNA library and which regions are the most
promising. This paper addresses the first question in the context
of DNA shuffling protocols and examines how fragmentation

length, annealing temperature, sequence identity, and number of
shuffled parent sequences affect the number, type, and distri-
bution of crossovers along the length of reassembled sequences.
This predictive framework provides a step toward optimizing
directed evolution protocols in response to an enzyme or protein
design challenge. In this paper, annealing events during reas-
sembly are modeled as a network of reactions, and equilibrium
thermodynamics is used to quantify their conversions and
selectivities.

Modeling of Annealing Events
During annealing, fragments compete to anneal with a growing
template. This competition is quantified by using equilibrium
thermodynamics to infer (i) what fraction of these fragments will
anneal at a given temperature, (ii) how these annealing events
will be distributed between those involving high or low overlap
lengths, and (iii) what portion of these annealing events will
involve mismatches. An annealing event between fragments
originating from the same parent sequence yields a homoduplex
(assuming in-frame annealing), whereas the annealing of two
fragments from different parents gives a heteroduplex. Mis-
matches at exactly the 39 end will prevent extension and thus are
not counted.

The thermodynamics of duplex formation can be analyzed by
using nearest-neighbor parameters that describe the enthalpic
and entropic contributions of specific nucleotide pairs in the
overlapping region (7–12). The change DG in free energy
associated with an annealing event can be approximated by
summing the free energy gains associated with all 2-nt matches
and the free energy penalties associated with the mismatches.
Additional corrections also are included for the duplex initiation
free energy cost, salt concentration, and dangling end stabiliza-
tion (13). Enthalpic and entropic parameters at 37°C for the
contribution of pairs of matches and mismatches are shown in
Table 2, which is published as supplemental material on the
PNAS web site, www.pnas.org.

Given this free energy predictive capability the extent of
duplex formation can be tracked at different temperatures.
Specifically, consider the reaction associated with the annealing
of a fragment F with a template A, forming a duplex AF.

A 1 F º AF.

Assuming equilibrium, the equilibrium constant K(T) links the
mole fractions of the template, fragment, and duplex at different
temperatures.

K~T! 5 expS2
DG~T!

RT D 5
xAF

xAxF
.

Here x denotes mole fractions and 0 denotes initial values of the
species in the reaction mixture so that xA 5 xA

0 2 xAF and xF 5
xF

0 2 xAF. Let a(T) be the annealing curve defined as the fraction
of templates that have annealed at temperature T, [a(T) 5
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xAFyxA
0 5 1 2 xAyxA

0 ]. Upon rearrangement these equations can
be solved for xF, xA, xAF, and a(T). The temperature at which half
of the templates have hybridized to form duplexes [i.e., a(T) 5
1y2] is defined as the melting temperature Tm. Comparisons of
the predictions obtained with the described free energy model-
ing framework against those found by an empirical formula
commonly used for hybridization experiments (14) are in good
agreement (see Table 3, which is published as supplemental
material). Plots of a(T) versus T reveal that there is a relatively
narrow temperature range, centered around Tm, where the
majority of annealing events take place (sigmoidal curve). In
general, longer overlaps imply higher melting temperatures
whereas shorter overlaps, mismatches, and low GC content
depress Tm.

During the annealing step of DNA shuffling, not a single, but
many different fragments with varying lengths, overlaps, and
mismatches are competing for a given template.

A 1 Fmvº AFmv.

Here m refers to a fragment originating from parent sequence
m and v implies an overlap length of v nucleotides with the
template on annealing. After adjusting the expression for a(T) to
reflect the multiplicity of annealing choices and resolving the
system of equations the temperature-dependent selectivity

smv~T! 5 xAFmvyS O
m9,v9

xFm9v9D
for a particular fragment and overlap choice mv is estimated. The
presence of multiple fragment and overlap choices ‘‘spreads’’ the
melting curve over a wider range of temperatures, implying that
annealing events occur over the entire temperature range (typ-
ically 94–55°C). The free energy differences between annealing
choices and relative fragment concentrations determine which
annealing choice dominates at a given temperature. For instance,
at high temperatures fragments with large overlaps that match
perfectly with the template dominate all other ones because of
the large enthalpic gains that they provide on annealing. As the
temperature is lowered, the melting temperatures of fragments
with progressively smaller overlaps and even one or two mis-
matches is reached, resulting in selectivities that are much more
uniform.

Because annealing selectivities are temperature dependent,
duplex formation must be assessed cumulatively over the entire
annealing temperature range. To this end, the annealing step is
modeled as a sequence of pseudoequilibrium states progressively
contributing duplexes as the temperature is lowered from 94°C
to 55°C. Mathematically, this implies integration of the temper-

ature-dependent selectivities smv(T) times the annealing rate
da(T)ydT over the annealing temperature schedule.

Smv 5E
Tanneal

Tdenature

smv~T!
da~T!

dT
dT.

Given a pool of fragments competing for a template and an
annealing temperature schedule, Smv quantifies the overall an-
nealing selectivities. The effect of the length of overlap and
numberyseverity of mismatches is illustrated in Fig. 1. The first
plot (Fig. 1a) addresses the case when there are no mismatches.
It clearly shows that there is strong preference toward annealing
events involving the maximum overlap. However, a non-
negligible portion of annealing events involve shorter overlaps.
The second plot (Fig. 1b) considers the effect of the number and
type of mismatches on annealing selectivities for a given overlap
length. Although the great majority of annealing events involve
no mismatches (homoduplexes) there are some mismatch-
bearing annealing events (heteroduplexes), which upon exten-
sion give rise to crossovers. Note that, in the present implemen-
tation, the type of a mismatch affects its selectivity whereas its
distance from the 39 end does not. Next, the individual annealing
statistics are used to infer crossover generation in the reassem-
bled sequences.

Fragment Reassembly
The reassembly process is modeled as a successive sequence of
annealing events. Specifically, the selectivity of an annealing
event is assumed to depend only on the identity of the fragment
added immediately before. For clarity of presentation, only
fragments of a unique length L will be used in the reassembly
analysis. Nevertheless, fragments with varying lengths can be
incorporated in a straightforward manner as described (15, 16).

The key idea of the reassembly procedure is to postulate a set
of recursive relations that resolve the question of what is the
probability Px that a full-length reassembled sequence of B
nucleotides has x crossovers. To this end, we define Pik

x denoting
the probability that reassembly from position i to the end B of
the DNA sequence will yield exactly x crossovers, given that the
fragment ending at position i 2 1 originated from parent
sequence k. The selectivities Smv, defined earlier, can then be
calculated for different annealing choices. When a fragment
from parent sequence m anneals with a fragment from sequence
k either a homoduplex (m 5 k) or heteroduplex (m Þ k) is
formed. Homoduplex formation implies that no crossover is
generated and the recursion must still track x crossovers over the
remainder of the reassembly. However, heteroduplex formation
implies that only x 2 1 remaining crossovers must be subse-
quently tracked. The annealing of a fragment of length L with an
overlap v implies the addition of L 2 v nucleotides, extending the

Fig. 1. Selectivity versus overlap lengths (a) and selectivity for different degrees, types, and locations of mismatches (b). Both charts use the subtilisin E gene,
positions 760–784, and mismatches are evenly distributed in the overlapping region.
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template to position (i 2 1) 1 (L 2 v). This position becomes
the new reassembly point completing the recursion. Summation
over all parent sequences m and overlap lengths v encompasses
all possible reassembly pathways.

Pik
x 5 O

v 5 1

L 2 1

SkvPi 1 L 2 v,k
x 1 O

m Þ k

O
v 5 1

L 2 1

SmvPi 1 L 2 v,m
x 2 1 ,

; x . 0, ; i . L, and ; k.

Resolution of this recursion requires boundary conditions at the
start and end of the gene or gene fragment under consideration.
At the onset of reassembly, the initial fragment covers the range
i 5 1 to i 5 L, implying that subsequent annealing events add
nucleotides starting from position i 5 L 1 1. This initial
fragment comes from parent m with probability equal to the
relative concentration Cm of parent m in the reaction mixture.
This implies that the probability Px that the reassembled se-
quences contains x crossovers is the parent relative concentra-
tion averaged probability of having x crossovers past position
L 1 1.

Px 5 O
m

CmPL11,m
x , x 5 0, 1, . . .

The boundary conditions for the end position B ensure that no
crossovers occur beyond position i 5 B.

Pik
0 5 1, ; i . B, and ; k

Pik
x 5 0, ; x . 0, ; i . B, and ; k.

Because reassembly is a bidirectional process, the reassembly
algorithm also is executed in the reverse direction with the
complementary DNA sequences and the results are combined.
A flowchart outlining the proposed reassembly procedure is
shown in Fig. 6, which is published as supplemental material.

Interestingly, the original application of the reassembly algorithm
overestimated the total number of crossovers, especially for shuf-
fling sequences that share very high sequence identity. Closer
inspection revealed that this was due to the formation of hetero-
duplexes with fragments involving perfect sequence identity with
the growing template. Even though they are indeed crossovers,
according to the formal crossover definition, they are completely
undetectable experimentally and more importantly they do not
contribute any diversity. Therefore, the term silent crossovers was
proposed for them, and the reassembly algorithm was revised to
exclude them. Specifically, if the annealing of a fragment from
parent m to a growing template ending with a fragment from parent
k is equivalent to the continuation of the template with nucleotides
from parent k, no crossover is counted.

The proposed reassembly procedure allows the estimation of
the fraction of the reassembled sequences containing x 5 0, 1, . . .
crossovers. By redefining what constitutes a desirable crossover
different types of crossovers can be assessed separately. For
example, in the family DNA shuffling of sequences A, B, and C
the statistics of all six possible types of crossovers AB, BA, AC,
CA, BC, and CB can be tracked independently. In addition, one
could even track homoduplex extension events such as AA, BB,
or CC. Next, the statistics of the distribution of these crossovers
along the reassembled sequences is examined.

Specifically, the question addressed is what is the probability
that a given position i in a reassembled sequence is the site of a
crossover (i.e., end point of a heteroduplex annealing event).
This probability depends on the parent origin of the fragment
ending at position i 2 1. Thus, the probability that a fragment
from parent k ends exactly at position i 2 1 is defined as Tik. A
recursion is then established in a similar manner as before. A

fragment from parent m ends at position i 2 1 if and only if it
was added to a fragment from parent k ending at position i 2 L
1 v with an overlap v. The probability for this particular duplex
formation event can be quantified by multiplying the selectivity
Smv times the probability Ti2L1v,k that the template is positioned
appropriately.

Tim 5 O
k

O
v 5 1

L 2 1

Ti 2 L 1 v,kSmv, ; i . L 1 1, and ; m.

Boundary conditions ensure that the first nucleotide added to
the original fragment comes from a parent sequence k with a
probability proportional to its relative concentration. Further-
more, no fragment may end before position i 5 L.

TL 1 1,k 5 Ck, ; k

Tik 5 0, ; i # L, and ; k.

Once the probability Tik that a particular type of template k ends
immediately before position i is known, it can be multiplied by
the selectivity of a crossover-generating annealing event Smv and
summed over all possible annealing choices to infer the proba-
bility Pi

cross that position i is the site of a crossover.

Pi
cross 5 O

k

O
v 5 1

L 2 1 O
m Þ k

TikSmv.

Again, by tailoring the definition of a crossover, the distribution
of different types of crossovers (i.e., AB, BC, or AC) along the
sequence can be assessed separately. A consistency check reveals
that the average number of crossovers calculated based on the
probabilities Pi

cross quantifying crossover density along the DNA
sequence, (¥iPi

cross), is identical to the one obtained based on the
crossover number distribution calculated earlier (¥x xPx). Given
this versatile algorithmic framework the statistics of any type of
crossover can be quantified both in terms of variability among
the reassembled sequences and along the length of the gene.
Predictions obtained based on the above described analysis are
next contrasted against experimental data from DNA shuffling
experiments reported in the literature.

Comparisons with Experimental Results
Although directed evolution studies are being reported in the
literature with an accelerating pace, only a few studies report
DNA sequencing results for naive (i.e., unselected) DNA librar-
ies. Partial DNA sequencing results allowing for the estimation
of the number of crossovers in a small subset of the reassembled
sequences are found for the following five studies. Computer
simulation of DNA shuffling of these systems provides the basis
for the comparisons. Every effort was made to ensure that the
fragment length, annealing temperature, and salt and DNA
concentrations matched the ones in the experimental study.
When no information was provided, default values from the
original DNA shuffling protocol (5) were adopted.

The first system considered is two 465-bp IL-1b genes (human
and murine) (5) with a sequence identity of only 75%. An
extremely low annealing temperature of 25°C was used to boost
the generation of crossovers. Nine colonies were sequenced for
a total of 17 crossovers, implying an average of 1.9 per sequence.
Simulation results are in close agreement with experiment,
predicting an average of 1.5 crossovers.

The next system involved the family DNA shuffling of four
class C cephalosporinase genes, 1.2 kb in length with pairwise
sequence identities ranging from 58% to 82% (6). It was
reported that neither of the two active clones sequenced con-
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tained any fragments from the Yersinia enterocolitica gene (third
gene). The question is whether this occurred because fragments
originating from this gene have a detrimental effect on activity
or simply because pieces from this gene are disproportionately
misrepresented in the naive library due to the lack of sufficiently
long stretches of near-perfect sequence identity with the other
three genes. The average sequence identity of each one of the
four genes against the remaining three are 70%, 70%, 65%, and
59%, respectively. Simulation results predict that 36% of the
naive sequences contain at least one crossover. The fraction of
crossover bearing sequences containing at least one piece from
each one of the four genes is 85%, 95%, 7%, and 19%,
respectively. This indicates that Y. enterocolitica (third one) is by
far the least even though it is not the one with the lowest
sequence identity. This suggests a possible explanation for the
absence of any piece of Y. enterocolitica in the most active clones.

The next system studied involved two genes for glycinamide
ribonucleotide transformylase, Escherichia coli (purN) and human
(hGART) (17) with a very low sequence identity of 50%. Here the
following staggered portions of the two genes were shuffled (E. coli
positions 1–434) and (human positions 164–611), implying that
crossovers could only be formed in the 271-bp shared region (47%
sequence identity). This arrangement requires that all reassembled
genes of full length start with the E. coli gene and end with the
human gene, yielding odd numbers of crossovers. In the experi-
mental study only single crossover clones were observed of 10
sequenced clones. This is consistent with the simulation prediction
that the ratio of the number of reassembled sequences with three
or more crossovers to the number of sequences with a single
crossover is less than 1029. A system with a relatively high sequence
identity is analyzed next. It involves the DNA shuffling of two
biphenyl oxygenases sharing a sequence identity of 87% (18). For
this system, an average of 3.3 crossovers per sequence is observed
experimentally (six sequenced clones), whereas the simulation
suggests a slightly smaller average of 2.8.

The last study is the only one where the simulation results
deviated from the experimentally observed crossover averages.
It involved the DNA shuffling of a 1.3-kb gene for wild-type
subtilisin E and that of a clone (1E2A) differing by only 10 point
mutations (19). Slightly larger fragments in the range of 20 to 50
bases were used in place of the default fragment length range of
10 to 50 bases. One would expect that a large average number of
crossovers would be generated in this system because only 10
point mutations are present, implying a sequence identity of
99.2%. However, this is not observed experimentally as only an
average of 1.9 crossovers per sequence is reported (19). The
simulation results, on the other hand, are consistent with the

intuitive expectation, predicting an average of 3.6 crossovers per
reassembled sequence. The randomly chosen sequences may not
have been representative of the entire DNA library. For in-
stance, recombinations between mutations at positions 520 and
732 in clone 1E2A must be occurring independently because the
stretch of perfect identity is much wider than even the maximum
fragment size. However, a crossover occurs in only 10% of the
reported sequences instead of the 50% frequency expected for
independent reassembly. With the exception of this last example,
simulation predictions are in good agreement with the published
experimental results without adjustable model parameters.

Subtilase Case Study
Subtilases are serine proteases (20) extensively engineered with
directed evolution experiments (21, 22). A set of 12 subtilases
including subtilisins E, BPN9, Carlsberg, 147, ALP I, PB92, and
Sendai; serine proteases C and D; proteinases K and R; and
thermitase is next considered to highlight the effect of fragmenta-
tion length, annealing temperature, sequence identity, and number
of shuffled sequences on the number, type, and distribution of
crossovers. We chose to mirror recent subtilase-directed evolution
experiments (22) by analyzing the shuffling of only a 500-bp
subgenomic region. The average pairwise sequence identity is 58%
ranging from 44% to 90%. First, a high sequence identity 80% pair
(subtilisin E, subtilisin BPN9) is considered.

As shown in Fig. 2a, for a fragmentation length of L 5 50
bases, 44% of the reassembled sequences involve no crossovers,
37% one crossover, 15% two crossovers, and diminishing per-
centages for sequences with more than two crossovers. As the
fragment length is reduced, a nonlinear increase of crossovers is
observed. This nonlinear increase in the average number of
crossovers as a function of L is more clearly depicted in Fig. 2b.
Interestingly, the same plot (dashed line) reveals a dramatic
increase of silent crossovers for very small fragment lengths (i.e.,
L # 20). Fig. 3 illustrates the distribution of crossovers super-
imposed against the sequence identity along the sequence. It
shows that crossovers are preferentially aggregated in regions of
near perfect sequence identity forming a characteristic double
peak. The double peak implies that annealing events make full
use of the available sequence identity, giving rise to two distinct
double peaks at the two flanking positions of the sequence
identity stretch. Larger fragments afford a wider range of
overlaps flattening the two peaks whereas smaller fragments are
capable of generating crossovers in relatively narrow regions of
high sequence identity. However, in DNA shuffling not a single
fragmentation length L is used but rather a distribution of
fragment sizes, typically in the range of 10 to 50 bases, with a size

Fig. 2. (a) Crossover number distribution for DNA shuffling of subtilisin E and subtilisin BPN9 for L 5 15, 25, and 50 bases. (b) Average number of crossovers
per sequence for the same system plotted versus fragment length in bases. The dotted line includes silent crossovers.
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distribution described by an exponentially decaying function (15,
16). When a range of fragment sizes is used for the above
example, computational results reveal that the crossover statis-
tics are almost identical with the case of using a single ‘‘effective’’
fragment size, which for the 10- to 50-base range is 25 bases.

Next, the effect of annealing temperature on crossover genera-
tion is studied. What is found is that two underlying mechanisms
exist with which annealing temperature affects the crossover sta-
tistics (see Fig. 4). Specifically, for medium to large fragments, lower
annealing temperatures imply that the melting temperatures of
more annealing choices containing mismatches (i.e., heterodu-
plexes) are encountered, yielding more crossovers upon extension.
However, for very small fragments at high temperatures the en-
tropic contribution to the free energy of annealing dominates,
blurring the distinction between homoduplexes and heterodu-
plexes, causing a sharp increase in the total number of crossovers.
Clearly, as in the case of fragment length, the annealing tempera-
ture cannot be arbitrarily reduced because at some point fragments
cease to exhibit strong affinity for annealing in-frame, and out-of-
frame additions start to overwhelm the reassembly process.

The limits of DNA shuffling are explored by choosing the low
sequence identity pair (serine protease D, proteinase K), which
has a 46% sequence identity. As expected, very few crossovers
are predicted (see Table 1) with only a single narrow region at
the end of the sequence coinciding with a short stretch of high
sequence identity. Subsequently, the high sequence identity pair
(subtilisin E, subtilisin BPN9) is shuffled in silico together with
the low sequence identity pair (serine protease D, proteinase K)
in equal ratios. The key question is whether the low identity pair
will simply dilute the fragment pool that can form heterodu-
plexes depressing crossover generation by a factor of 2, or if
synergism in the reassembly will dominate. Even though the
average pairwise sequence identity for the four subtilase system
is as low as 58%, a comparable number of crossovers with the
(subtilisin E, subtilisin BPN9) single pair case is found (see Table
1). This implies that synergistic reassembly is taking place
alluding to the contribution of ‘‘bridging’’ crossovers by the low
sequence identity pairs. The full power of synergistic reassembly
is revealed when all 12 subtilases are included, providing a
computational verification of what is seen experimentally with
family DNA shuffling, especially for smaller fragments. Even
though the average pairwise sequence identity is only 58% at
least as many crossovers are generated (see Table 1) as for the
high sequence identity 80% pair. More importantly these cross-
overs span the entire sequence range (see Fig. 5). Admittedly
though, the distribution is still multimodal with peaks tracking
the location of high sequence identity, a signature of the
annealing-based reassembly characteristic of DNA shuffling.

Fig. 3. Probability of generating a crossover along the length of the sequence for the (subtilisin E, subtilisin BPN9) system for L 5 15, 25, and 50 bases along
the subregion 485–979. Black columns in the bottom strip chart denote identical nucleotides for both sequences, and white lines denote mismatches.

Fig. 4. Effect of annealing temperature to the number of crossovers pro-
duced for the high sequence identity subtilase pair (subtilisin E, subtilisin
BPN9).

Table 1. Average numbers of crossovers per sequence calculated
for various fragment lengths L and parent sets

L
(bases)

High seq.
ident. pair

Low seq.
ident. pair

Set of 4
subtilases

Set of 12
subtilases

15 2.9 0.5 2.3 4.8
25 1.3 0.1 0.8 1.4
50 0.8 0.0 0.5 0.8
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Summary and Discussion
In this paper a quantitative framework for assessing the number,
type, and distribution of crossovers is proposed in the context of
DNA shuffling. This predictive framework allows one to explore
‘‘what if’’ scenarios in terms of fragmentation, length, annealing
temperature, and parent choices in the context of DNA shuf-
f ling. Comparisons of predictions against experimental data
reveals good agreement, particularly in light of the fact that there
are no adjustable parameters. The only parameters are the free
energy contributions used unchanged from literature sources
(see Table 2). Therefore, no reparameterization is needed when
experimental conditions or the sequences to be shuffled change,
thus providing a versatile framework for comparing different
protocol choices and setups. Interestingly, the application of in
silico DNA shuffling revealed the presence and quantified the
frequency of silent crossovers and synergistic reassembly.

The free energy-based reassembly framework is f lexible
enough to consider the case of out-of-frame additions. By
scoring all possible out-of-frame additions based on their asso-
ciated free energy of annealing the fraction of reassembled
sequences that are out-of-frame can be quantified. By setting
maximum limits on this target, minimum allowable fragment
lengths and annealing temperatures then can be inferred. In
addition, if necessary, the amount of backcrossing with the wild

type needed to keep out-of-frame reassembled sequences in
check also can be estimated. Ongoing work on combining
nonhomologous recombination protocols (17) with DNA shuf-
f ling in the context of SCRATCHY (23) has revealed counter-
intuitive mechanisms for crossover generation and valuable
insights for the engineering of directed evolution protocols
tailored to desired crossover profiles.

Our future vision is an integrated system that combines the
crossover allocation estimator proposed in this paper with a
targeting system that will identify contiguous or not motifs
through statistical inference (24) that are likely to give rise to
active enzymes or functional proteins. An optimizer then will be
used to identify which directed evolution protocol or nonobvious
combinations of protocols and setups will produce crossover
profiles most ‘‘in tune’’ with the motif targets. Alternatively, one
may combine the crossover allocation estimator with different
hypotheses being put forward for the type of crossovers that are
likely to yield active enzymes or functional proteins. Such
hypotheses include multipool swapping (25) and the recently
proposed minimum schema disruption (C. A. Voigt, S. L. Mayo,
F. H. Arnold, and Z. Wang, personal communication).
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